PHYSICAL REVIEW E 72, 036122 (2005)

Dynamic Monte Carlo simulations of the three-dimensional random-bond Potts model
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The effect of random bonds on the phase transitions of the three-dimensional three-state Potts model is
investigated with extensive dynamic Monte Carlo simulations. In the weakly disordered regime, the phase
diagram is obtained with a recently suggested nonequilibrium reweighting method. The tricritical point sepa-
rating the first- and second-order transitions is determined, and the critical exponents of the continuous phase
transition induced by quenched randomness are estimated.
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I. INTRODUCTION

The influence of quenched disorder on phase transitions
has been the subject of substantial interest for physicists in
the past years. Schwenger et al. [1] investigated experimen-
tally the critical behavior of the order-disorder phase transi-
tion of the (2 X2)-2H structure on Ni(111) for the pure sys-
tem and in the presence of 0.3%-3% of a monolayer of
preadsorbed atomic oxygen. It was found that depending on
the oxygen concentration, the values of the critical exponents
change from those of the four-state Potts universality class to
the Ising-like exponents. This behavior is qualitatively in
agreement with the effect of random quenched impurities.
An extensive experimental study [2] of the isotropic to nem-
atic phase transition of nCB liquid crystals in aerogel shows
that the transition temperature is lowered compared to the
pure case and that the transition changes from first order to a
continuous one.

Earlier theoretical works [3-5] on disordered systems in-
dicate that quenched disorder could produce rounding of a
first-order phase transition and, thus, induce a second-order
one. The pure Potts model exhibits a temperature-driven
first- or second-order phase transition, depending on the state
g and spatial dimension D. The disordered Potts model is
therefore a good laboratory for the study of the effect of
quenched disorder on phase transitions. In two dimensions,
the critical point of the random-bond Potts model with a
self-dual bimodal distribution is even known exactly [6].
This is an advantage for numerical simulations. Aizenman
and Wehr [5] have rigorously proved that for D<2, an arbi-
trarily weak amount of quenched bond randomness leads to
elimination of any discontinuity in the density of the variable
conjugate to the fluctuating parameter. Along this under-
standing, many activities in the last decade have been de-
voted to the two-dimensional random-bond Potts model
[7-21].

For the random-bond Potts model in higher dimensions,
theoretically it is shown that a tricritical point may appear at
a finite concentration of impurities [12], and it separates the
first- and second-order transitions. In three dimensions, for
understanding the influence of disorder on first-order transi-
tions, the first numerical study of the Potts models with
quenched disorder was presented in Ref. [22], and recently,
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the site-diluted three-state and bond-diluted four-state Potts
models [23,24] have been studied with Monte Carlo simula-
tions. Numerical evidence for the existence of a tricritical
point was reported. The authors of Ref. [24] also estimated
the critical exponents of the induced continuous transition. It
was found that the exponents B/v=0.65(5) and v
=0.752(14) are clearly different from those of either the
three-dimensional (3D) disordered Ising [25-27] or the
three-state site-diluted Potts model. On the other hand, it is
interesting and important to investigate numerically the gen-
eral effect of random bonds on phase transitions and critical
dynamics. However, due to strong critical slowing down in-
duced by the bond disorder and the numerical difficulties of
distinguishing second-order and weak first-order phase tran-
sitions, numerical simulations of the three-dimensional
random-bond Potts model are not easy even in the case of a
symmetric bimodal distribution. Recently, some effort has
been made in this direction, and numerical simulations as
well as analytical results are reported for the large-g-state
random-bond Potts model in three dimensions [28].

In 1989, with renormalization group methods Janssen,
Schaub, and Schmittmann derived a dynamic scaling form
for the O(N) vector model, which is valid up to the macro-
scopic short-time regime, after a microscopic time scale 7,
[29]. The dynamic process they considered is that the system
initially at a very high temperature state with a small or zero
magnetization is suddenly quenched to the critical tempera-
ture and then released to the dynamic evolution of model A.
Such a short-time dynamic scaling behavior has been nu-
merically verified [30-34], and it is also consistent with rel-
evant theories and experiments in spin glasses. Furthermore,
the short-time dynamic scaling can be extended to the dy-
namic relaxation starting from an ordered state [33,35,36].

More interestingly, based on the short-time dynamic scal-
ing, it is possible to extract not only the dynamic exponents,
but also the static exponents as well as the critical tempera-
ture [33,37-39]. Since the measurements are carried out in
the short-time regime of the dynamic evolution, the method
does not suffer from a critical slowing down. What we pay
for this approach is that the measurements of the dynamic
exponents and static exponents cannot be separated. There-
fore, the statistical errors of the static exponents include
those from the dynamic exponents. However, if we are also
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interested in the dynamic behavior, the short-time dynamic
approach is rather useful. Compared with the nonlocal clus-
ter algorithms, the dynamic approach does study the dynam-
ics local in time and, in general, applies also to disordered
systems [21,40,41].

On the other hand, in the last two decades, much effort
[42-46] has been devoted to the subject of reweighting tech-
niques in Monte Carlo simulations in equilibrium. These re-
weighting methods have greatly improved the efficiencies of
Monte Carlo simulations in many aspects. Therefore, it is
rather appealing to develop a dynamic reweighting method.
Such a technique for a contact process was first proposed by
Dickman [47]. Recently, a rather generic reweighting method
for nonequilibrium Markov processes was presented by Lee
and Okabe [48]. With nonequilibrium Monte Carlo simula-
tions at a single temperature, one obtains the dynamic evo-
lution of physical quantities at different temperatures. But it
is somewhat unsatisfactory that for the method suggested in
Ref. [48], the reweighting temperatures need to be fixed be-
fore simulations, and one pays extra computer time in pro-
portion to the number of reweighting temperatures.

The purpose of this article is to study numerically the
effect of quenched bond randomness on the softening of the
first-order phase transition. Combining the short-time dy-
namic approach and dynamic reweighting techniques, we
perform extensive Monte Carlo simulations for the 3D
random-bond Potts model and provide an estimate of the
tricritical point and critical exponents of the induced continu-
ous phase transition. On the other hand, we aim at some
improvement of the dynamic reweighting method and apply
the method to more complex systems. The short-time dy-
namic approach to the weak first-order phase transition is
also attractive in this context.

The models, the dynamic scaling analysis, and an im-
proved nonequilibrium reweighting method are described in
Sec. II. Numerical simulations are presented in Sec. III. The
final section contains the conclusions.

II. MODEL AND METHOD
A. Random-bond Potts model

The Hamiltonian of the three-dimensional g-state Potts
model with quenched random interactions can be written as

1
__HZEKi'(S(ri,(r-’ K>Ov (1)

kT Gy
where the spin o takes the values 1,...,q, 50[,0, is the Kro-
necker delta function, and the sum is over nearjest—neighbor
pairs on a cubic lattice. The dimensionless couplings K;; are
selected from two positive values of K;=K and K,=rK, with
a strong to weak coupling ratio r=K,/K called the disorder
amplitude, according to a bimodal distribution,

P(K;) =pdK;;—K;) + (1 =p)d(K;; = K>). (2)

The case of r=1 corresponds to the pure Potts model.

In this paper, we study the case of ¢g=3, p=0.5 (a sym-
metric distribution) with a combination of the short-time dy-
namic approach and reweighting techniques. Monte Carlo
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simulations with a standard Metropolis algorithm are per-
formed on a three-dimensional lattice with periodic boundary
conditions. For a review of the short-time critical dynamics
and its applications, see Refs. [33,39].

The physical observables we measure are the time-
dependent magnetization, its second moment, and the auto-
correlation function of the g-state Potts model respectively

defined as
__ 4 _1
M(1) = - 1)L3<; <5(ri(z),l q>> (3)
S ( _l) ’
M : (t) = (q _ 1)2L6< |:El 8(71-(1),1 q P (4)
1
A(l) = ﬁ<; (5(ri(0),rri(t) - C_])>’ (5)

where L is the lattice size.

B. Nonequilibrium reweighting method

Ferrenberg and Swendsen [42] first introduced the histo-
gram reweighting method to calculate statistical properties of
a system in equilibrium. The thermal averages for a range of
temperatures can be obtained from simulations at a single
temperature. Then the multihistogram algorithm was pro-
posed [43] to increase the effective reweighting range and
minimize the statistical errors. A great improvement was
achieved when artificial ensembles were applied to the re-
weighting mehtods [44,46]. Instead of the canonical distribu-
tion of the energy histogram, a “flat” histogram was ob-
tained. Recently, Wang and Landau [45] presented a simple
method to obtain the flat histogram. These reweighting tech-
niques have greatly improved the efficiencies of Monte Carlo
simulations in equilibrium.

Very recently, a reweighting method applicable to non-
equlibrium Markov processes was reported [48]. Consider a
simulation up to the rth Monte Carlo step as a sequence of
states,

0y) (6)

where o, is the spin configuration of the system at time f.
Hereafter, we refer to the Monte Carlo step simply as the
time of simulation. At an inverse temperature S=1/kgT, the
dynamical thermal average of an observable O(#) can be ob-
tained by (O(t))ﬁ=(1/.n)2;’210(0{), where o*{ are the spin
configurations from {x/,j=1,...,n}, a set of paths obtained
in the simulations at a fixed B. To calculate the dynamical
thermal average at another temperature 3’, the measured ob-
servable O(0?) has to be reweighted with a set of weights
{w/}. For the same set of paths {x’}, the thermal average at /3’
is obtained as

)Zt=(0'1,0'2, ..

(0(t)g =2 wiola) | 2w (7)
j=1 j=1

Here the weights w/ can be obtained by
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/= MW;‘ with w) =1, (8)

P B(O{+l|0';)
where P(o7,,|07) is the transition probability of the Monte
Carlo algorithm.

However, if the weights are directly updated in the algo-
rithm as in Ref. [48], one needs to predetermine the re-
weighting temperatures. The more temperatures we intend to
reweight, the more computer time it will take in the simula-
tion. Especially, in some cases one is not sure which tem-
peratures are needed before the simulations. To improve the
algorithm, we propose the following algorithm for each path
x,j=1,...,n, to calculate the weights.

(1) Choose a spin and flip it according to the Metroplolis
algorithm, with a transition probability ~Pg(a"/|0’)
=min[1,exp(—BAE)]. Here, AE is the energy change due to
the trial spin flip from o7 to o'/,

(2) At this point, there are three possible outcomes.

(a) If AE<O, the trial spin flip is always accepted and we
need do nothing.

(b) If AE>0 and the trial spin flip is accepted, we add 1
to n{,(AE ,0).

(c) If AE>0 and the trial spin flip is rejected, we add 1 to
nﬁ(AE J0).

Here, n/(AE,?) is a function to count the number of a
certain energy change AE up to time ¢ in the path j. n/(AE,t)
should be updated in every spin flip, but recorded only at the
time steps when the measurements are performed.

Obviously, the set of weights w{ depend on the simulation
temperature (B, the new temperature B’, and the energy
change AE, but not on the concrete spin configuration. We
can restore different sets of weights at different temperatures
from the same set of AE by

w) = [[ expl— (B’ - B)nj(AE,1)AE]
E

_ _n n{;(A )]
XH[M] E, ()

ae L 1—exp(- BAE)

where the product is over all possible energy change AE due
to the spin ﬂip. In fact, the first term can be written as
exp[—(B' —B)E}(1)]. Here, E/(t) is to record the sum of the
energy change in case b of step 2 up to time 7. For the nearest
interaction, the number of AE is very small. In the case of
the 3D random-bond Potts model, there are 28 kinds of posi-
tive energy change when a spin is flipped (r# 1). Using this
algorithm, we add nearly no extra computer time to a single
simulation and, in principle, can reweight the observables to
any temperatures that need not to be predetermined.

C. Dynamic scaling analysis

In the last decade, it has been discovered that already in a
macroscopic short-time regime the universal scaling behav-
ior emerges. The physical origin of the scaling behavior is
the divergent correlating time of the second-order phase tran-
sition. A dynamic scaling form, which is valid up to the
macroscopic short-time regime, has been derived with an €
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expansion up to two-loop order by Janssen er al. [29,33], and
its finite-size form—e.g., for the kth moment of the
magnetization—is written as

M®(t,7,L,mg) = b™*F"MP (b=, bV 7,67 L, b"omyy) .
(10)

Here b is a rescaling factor, 7 is the reduced temperature, 8
and v are the static critical exponents, and z is the dynamic
exponent, while the new independent exponent x, is the scal-
ing dimension of the initial magnetization m, and m, is as-
sumed to be small, around the fixed point my=0. It is impor-
tant that from the scaling behavior of Eq. (10) it is possible
to extract not only the dynamic exponents x, and z but also
the static exponents originally defined in equilibrium. Since
the nonequilibrium spatial correlation length at the early
stage of the time evolution is small, the finite-size effect can
be easily controlled. Measurements now are carried out at an
early stage of the time evolution; therefore, one does not
suffer from a critical slowing down.

In general, for the determination of the dynamic exponent
z and static exponents, a dynamic process starting from a
completely ordered state is more favorable, since there is less
fluctuation. In this case, the dynamic system is at another
fixed point my=1 [in contrast to the fixed point my=0 rel-
evant for Eq. (10)]. The scaling variable m,; now becomes
irrelevant for the dynamic scaling behavior, and it can be
simply removed from Eq. (10) [33]. Assuming that the lattice
is sufficiently large, the dynamic scaling form of the magne-
tization around the critical point is written as

¢, =pPlvz. (11)

If 7=0, the magnetization decays by a power law M(z)
~1¢1 If 7#0, the power-law behavior is modified by the
scaling function F(¢/**7). From this fact, one determines the
critical point and the critical exponent 3/ vz. To estimate the
exponent 1/(vz), we differentiate In M(z, 7) and obtain

M(t,7) =t 1F ("),

. InM (t,7)| o~ 11, ¢;=1/vz. (12)

In order to measure the dynamic exponent z independently,
we introduce a time-dependent Binder cumulant U
=M®/M?~1, and the finite-size scaling analysis shows

U(t,L) ~ 12, c,=dlz. (13)

For a magnetic system which is initially in a high-
temperature state, suddenly quenched to the critical tempera-
ture 7, and then released for the dynamic evolution, two
interesting observables are the second moment of the mag-
netization and the autocorrelation function. For 7=0 and
my=0, it is well known [30,33] that

M(z)(t) ~r, y=(d-2B/v)z. (14)

Careful analysis [49] reveals that the autocorrelation function
behaves like

XO—ﬁ/V
- (15)

Al ~ 1N, \=

[ RN RSW

Interesting here is that even though m,=0, the exponent x,
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FIG. 1. The second moment obtained with the dynamic reweighting method for r=1.4 and r=2.2 and with a lattice size L=40 plotted vs
t on a log-log scale: (a) M®(r) with an ordered start from simulations at a single temperature K=0.4588 for r=1.4 and K=0.34535 for r
=2.2, respectively. The bold dashed line is the closest to the pseudocritical point K**. For comparison, two other direct simulations at
temperatures K=0.4589 and 0.4587 are displayed with dotted lines. (b) M®(r) with a disordered start from simulations at a single
temperature K=0.4597 for r=1.4 and K=0.34545 for r=2.2, respectively. The bold dashed line is the closest to the pseudocritical point K*.

still enters the autocorrelation function. This behavior has
been confirmed in a variety of statistical systems [30,33].

D. Dynamic criterion for weak first-order phase
transitions

At the second-order transition temperature 7, the short-
time behavior of physical observables obeys a power law in
dynamic processes starting from both a random and an or-
dered state. Away from T, the power-law behavior is modi-
fied by a scaling function [33]. If the phase transition is of
first order, independent of the initial states, physical observ-
ables at the transition temperature do not present a power-
law behavior due to the finite correlating time and/or the
symmetry breaking.

Around a first-order transition point, it is well known that
for K> K, there is a disordered metastable state, which van-
ishes at a certain K*. For K<K, there exists an ordered
metastable state, which disappears at K. For a weak first-
order phase transition, both K* and K™ look like critical
points if the system remains in the disordered and ordered
metastable states, respectively. K~ and K~ are named pseud-
ocritical points.

In equilibrium, numerical measurements of K~ and K™
are not easy due to finite-size effects. However, in the short-
time dynamics, K" and K™ can be determined rather confi-
dently. Starting from a high-temperature state, the system at
K> K, reaches the disordered metastable state first. Due to
the large correlating time induced by the large spatial corre-
lation length in the metastable state, physical observables at
K" present an approximate power-law behavior. The weaker
the transition is, the cleaner the power-law behavior will be.
This gives an estimate of K'. Starting from a zero-
temperature state, the system at K<<K, reaches the ordered
metastable state first and one can determine K*. At a second-
order phase transition, K~ and K™ overlap with the transition
point K. Therefore, as Schiilke and Zheng argued [50], the
difference of K~ an K™ gives a criterion for a weak first-

order transition. This method has been successfully applied
to a couple of physical systems [51,52].

III. NUMERICAL SIMULATIONS

We have performed Monte Carlo simulations with the
standard Metropolis algorithm. The maximum updating time
is taken to be from 500 to 1100 Monte Carlo time steps,
depending on the strength of disorder and the initial condi-
tions. The results are presented with a lattice size L=40. To
investigate the finite-size effect and further confirm our re-
sults, some simulations have been performed for L=64 and
96. Samples of the disordered couplings {K;;} for averaging
are mostly from 5000 for the ordered start to 20 000 for the
disordered start. For the case of strong disorder (r=10),
30 000 samples are collected with the ordered start for esti-
mating the exponent 1/v.

To estimate the errors, total samples are divided into three
or four subgroups. Statistical errors are then calculated from
independent measurements of these subgroups of samples. In
addition, results of the measurements may fluctuate also for
different time windows [7;,f,] in which the measurements
are performed. These errors will be taken into account if they
are comparable to statistical errors. In some cases, correc-
tions to scaling are considered when it is necessary.

A. Phase diagram and tricriticality

For the pure 3D three-state Potts model, the first-order
phase transition is not so strong and the recent result [53] of
the critical point is given at K,=0.550 565(10). Combining
the short-time dynamic approach and reweighting method,
we estimate K*=0.55124(3) and K"*=0.549 75(5) from the
time evolution of the second moment. The clear difference
indicates that the phase transition is of first order. Since the
crossover effect is somewhat strong when the disorder am-
plitude r is close to 1 (the pure case), we begin our simula-
tions from r=1.4 to measure M(s) and M@(7) with the or-
dered (mg=1) and disordered (my~0) initial states.
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FIG. 2. The second moment obtained with the dynamic reweighting method for r=2.3 and r=2.4 and with a lattice size L=40 plotted vs
1 on a log-log scale: (a) M®(r) with an ordered start from simulations at a single temperature K=0.3351 for r=2.3 and K=0.32545 for r
=2.4, respectively. The bold dashed line is the closest to the pseudocritical point K. (b) M?(r) with a disordered start from simulations at
a single temperature K=0.33515 for r=2.3 and K=0.32545 for r=2.4, respectively. The bold dashed line is the closest to the pseudocritical

point K.

In Fig. 1(a), the second moment with an ordered initial
state is obtained from simulations at K=0.4588 and then re-
weighted to a couple of temperatures around it; averages
were taken over 5000 samples. The curve exhibits a power-
law-like behavior at K™*=0.458 78(7). In order to further
confirm the reweighting approach, we have performed simu-
lations at K=0.4589 and 0.4587 and compared them with the
reweighting data from the simulation at K=0.4588. This is
also shown in Fig. 1(a) with dotted lines, which fit to the
corresponding solid lines within fluctuation. In Fig. 1(b), the
simulation is performed at K=0.4597 with a disordered start
and K"=0.4596(1) is estimated from M®(r). Similar to the
case of the pure Potts model, K™*< K" detects a first-order
phase transition.

For a weak first-order phase transition, the transition point
K, can be estimated from (K" +K"*)/2 [50]. For the 3D pure
three-state Potts model, (K" +K)/2=0.550 50(6) is already
rather close to K=0.550565(10) from the direct measure-
ment. The weaker the first-order phase transition is, the more
accurate the estimate of K, from (K"+K"")/2 will be. At r
=1.4, the first-order phase transition is obviously weaker
than that of the pure case, since the difference K'-K"" is
smaller and the second moment presents a better power-law
behavior. Therefore, we expect that (K'+K)/2
=0.459 20(14) is a relatively good estimate of the first-order
phase transition point K, at least within the statistical errors.

We gradually increase the disorder amplitude from r
=1.4 to 2.5. The results of r=2.2, 2.3, and 2.4 are displayed
in Figs. 1 and 2. Carefully analyzing the data from the simu-
lations, we find K* and K™ at each r. The values of the

pseudocritical points are summarized in Table I, and the
phase diagram in the disorder-temperature plane is plotted in
Fig. 3.

In Table I, we observe that the difference AK=K —K",
which measures the strength of the first-order phase transi-
tion, decreases gradually as r increases. At r=2.2, one can
still distinguish the two pseudocritical points. At r=2.3, how-
ever, AK is so small that K* and K overlap within the error
bars. When r=2.4, the phase transition is rounding to a con-
tinuous one. Clearly, there exists a tricritical point between
r=2.2 and 2.4—i.e., r.=2.3(1). This result can be compared
to that of the three-state bond-diluted Potts model [24],
where the tricritical point in the term of the bond concentra-
tion was estimated to be 0.76(8) and the simulations were
performed on a lattice size L=16. Our dynamic approach
shows its advantage in the numerical simulations of weak
first-order phase transitions.

B. Critical exponents of the continuous phase transition

Since there are rather strong corrections to scaling around
the tricritical point, we choose a disorder amplitude =10 for
the study of the critical properties of the induced second-
order transitions. In this case, however, simulations at a
single temperature are not sufficient to determine the critical
temperature and all the critical exponents. The fluctuations of
the reweighting data are stronger due to a big disorder am-
plitude r. (If one reweights K, to K;+ 6K, then, correspond-
ingly, K, to K,+rd8K.) Therefore, we perform simulations at
three separate temperatures for each dynamic process. In Fig.

TABLE I. Pseudocritical points K and K™ with different disorder amplitude r, measured with the short-time dynamic approach and the
nonequilibrium reweighting method for the 3D three-state random-bond Potts model. The tricritical point is estimated to be r.=2.3(1).

r=1.4 r=1.6 r=1.8 r=2 r=2.2 r=2.3 r=2.4 r=2.5
K" 0.45878(7) 0.42386(4) 0.39403(11) 0.36805(8) 0.34541(5) 0.33514(6) 0.32544(6) 0.31626(4)
K 0.45962(12) 0.42455(5) 0.39442(9) 0.36843(7) 0.34553(6) 0.33521(7) 0.32545(5) 0.31625(5)
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FIG. 3. Phase diagram of the 3D three-state random bond Potts
model. The dashed line is the transition, line of the first-order phase
transition, and the solid line is that of the second-order phase tran-
sition. The tricritical point (TP) is around r.=2.3(1).

4, we determine the critical point K,=0.102 65(5) with data
in a time interval [z;,7,]=[40,1000]. The error given here
includes the statistical error (obtained by dividing the
samples into subgroups) and the fluctuation in the time di-
rection. For example, for the dynamic relaxation from an
ordered state, we obtain K,.=0.102 65 with a statistical error
0.000 02, while the value of K, increases slightly when £,
changes from #;=10 to #;=100 and the variation is about
0.000 04. Taking into account also the dynamic relaxation
from a disordered state, we come to K,=0.102 65(5).

In Fig. 5, the curve of M(r) at K, starting from the ordered
initial state with a lattice size L=40 is displayed on a double-
logarithmic scale. It exhibits a perfect power-law behavior in
Eq. (11). Thus the exponent B/ vz can be estimated from the
slope of the curve. In order to study the possible finite-size
effect and further confirm our results, some simulations at
the same temperature have been performed with lattice sizes
L=10, 20, and 96 up to a maximum updating time of 250,
1000, and 2000, respectively. Obviously, within 1000 time
steps, the curves of L=40 and 96 overlap each other within
fluctuations, indicating negligible finite-size effects.
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FIG. 5. The magnetization with an ordered start for r=10 at
K_.=0.10265 plotted vs ¢ on a log-log scale. The solid lines are for a
lattice size L=10, 20, and 40, respectively. The dashed line is for a
lattice size L=96 to a maximum time #=2000.

To extract the dynamic exponent z independently, we ex-
amine the dynamic behavior of the time-dependent Binder
cumulant. Because of the crossover effect, corrections to
scaling of the Binder cumulant are detected in the early
times. Therefore, we fit the curve to the form of U(r)
~ 1Y (1+c¢/t*). (In Ref. [24], corrections to scaling are also
considered to extract the critical exponents.) In Fig. 6(a), a
good fit of U(z) is clearly seen in a time interval [10, 1000],
and the dynamic exponent is estimated to be z=2.47(5). If
corrections to scaling are not taken into account, a direct
power-law fit yields a dynamic exponent z about 5% smaller.
Taking the dynamic exponent z as input, we can calculate the
critical exponent /v from /vz measured in Fig. 5.

From the data of the magnetization in the neighborhood
of K., we can approximately calculate the differentiation
In M(z,7) and then estimate the exponent 1/vz according to
Eq. (12). For this purpose, we perform simulations at K, (or
a K very close to K,) and other two K’s about half percent
away from K, and then calculate In M(¢, 7) with quadratical
approximations. Here we observe also corrections to scaling
and therefore fit the data to d,In M(t,7)| =g~ /(1 +c/t").

T T T T T —Tr—T T

r=10 K =0.16275
0.10265
0.10250
(from above)

4 N PR S S S S T | 2 L L
1075 106 t

(b)

FIG. 4. The magnetization and second moment for r=10 and with a lattice size L=40 plotted vs ¢ on a log-log scale: (a) M(r) with an
ordered start from simulations at temperatures K=0.10275, 0.10265, and 0.10255. The bold dashed line is the closest to the critical point K.
(b) MP(¢) with a disordered start from simulations at temperatures K=0.10275, 0.10265, and 0.10250. The bold dashed line is the closest

to the critical point K.
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FIG. 6. The Binder cumulant and J,In M(r) with an ordered start for r=10 at K.=0.10265 plotted vs 7 on a log-log scale: (a) U(z) is
plotted with a solid line. The dashed line shows a fit with corrections to scaling. (b) d.1n M(7) is plotted with a solid line. The dashed line

shows a fit with corrections to scaling.

This is shown in Fig. 6(b), and a nice fit is observed in a time
interval from #=10 to 1100. The exponent 1/vz is estimated
to be 0.573(16). Thus we obtain the exponent 1/v=1.42(7)
with z as an input. Since the corrections to scaling here are
relatively strong, a simple power-law fit would yield an ex-
ponent 1/vz about 20% bigger. Therefore, the corrections to
scaling are essential here to keep the value of 1/v within the
upper bound d/2 [54].

Here the correction exponent b is small for both the time-
dependent Binder cumulant and In M(z,7), and the fittings
give b=0.017 with ¢=-0.935 and 0.026 with ¢=-0.982 for
the Binder cumulant and In M(z, 7), respectively. Therefore,
it is possible to fit the curves with logarithmic corrections.
The exponents are estimated to be z=2.50(3) and 1/v
=1.40(6), well consistent with z=2.47(5) and 1/v=1.42(7)
from the power-law corrections. After corrections to scaling
are taken into account, variations in the time direction be-
come not so prominent, comparable to statistical errors. For
the dynamic exponent z, both the statistical error and varia-
tion in the time direction are about 1%; therefore, it comes
up with a total error of 2%. The situation is similar for the
index 1/vz.

2

Further, we have performed the simulations starting from
a disordered initial state. In Fig. 7(a), M?(7) is plotted on a
log-log scale, and a nice power-law behavior is observed.
Based on Eq. (14), from the slope of the curve in a time
interval [50, 1000] the exponent y=(d—28/v)/z is estimated
to be y=0.761(14). Simulations have been also performed at
the same temperature with a lattice size=64. The curves for
both L=40 and 64 coincide well, and it shows that the finite-
size effect is negligibly small in this time regime. Another
interesting observable here is the autocorrelation function,
which is governed by the “new” exponent x,. The curve is
plotted in Fig. 7(b), which presents also a power-law behav-
ior. From the slope of the curve in a time interval [5, 100],
we estimate the index A\=d/z—(xo—B/v)/z=1.19(1) in Eq.
(15). The fluctuation beyond =100 is very large.

Finally, we find that corrections to scaling are negligibly
small in a dynamic relaxation from a disordered state (such a
phenomenon is also reported in the literature [55]). If one fits
the curves in Fig. 7 with a power-law correction—e.g.,
M(1) ~(1+c¢/1*)—one finds a nearly zero parameter ¢ in
the small-b regime (or for a logarithmic correction), and the
index y is almost unchanged. In the large-b regime, no stable

102 T T — T

™ T T TTTT
L

L1y

s 4 aaanl

L daaad

PSS | L % PON

(a)

(b)

FIG. 7. The second moment and autocorrelation with an disorder start for 7=10 at K,=0.10265 plotted vs ¢ on a log-log scale: (a) M@ (r)
is plotted with a solid line. The dashed line is for a lattice size L=64 to a maximum time =1000. (b) A(¢) is plotted with a solid line. The

dashed line shows a power-law fit.
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TABLE II. The critical exponents for the 3D three-state random-
bond Potts (RBP) model with r=10, measured from A(7), M@(s),
M(t), d.InM(z,7), and U(r), respectively, starting from both the
random and ordered initial states.

my RBP
y=(d-2B/v)/z 0.0 0.761(14)
N 1.19(1)
c1=Blvz 1.0 0.221(1)
cy=dlz 1.216(14)
c=1/vz 0.573(16)
z=d/c, 2.47(5)
z=d/(y+2c)) 2.49(5)
Blv=zc, 0.548(13)
1/v=z¢, 1.42(7)

fit is observed. Therefore, errors of the indices y and \ are
mainly statistical errors.

In Table II, all our measurements of the critical exponents
of the three-dimensional three-state random-bond Potts
model are summarized. For the dynamic exponent z, one
estimates its value either from z=d/c,=2.47(5) or from z
=d/(y+2c;)=2.49(5). These two values agree well within
statistical errors and support the dynamic approach to the
disordered Potts model. The static exponents B/v and 1/v
are calculated with an average z=2.48(5).

For comparison, the critical exponents are listed in Table
III for the three-dimensional three-state site-diluted Ising
model, the three-state site-diluted, four-state bond-diluted
Potts, and large-g-state random-bond Potts models. Within
statistical errors, our value 1/v=1.42(7) is consistent with
1/v=1.449(11) for the three-state site-diluted Potts model
[23]. This supports the universality of phase transitions with
respect to the form of (strong) disorder. We also observe that
the static exponents of the random-bond Potts model are

PHYSICAL REVIEW E 72, 036122 (2005)

TABLE III. The critical exponents for the 3D three-state
random-bond Potts (RBP) model, site-diluted Ising (SDI) model
[27], three-state site-diluted Potts (SDP) model [23], four-state
bond-diluted Potts (BDP) model [24], and large g-state random-
bond Potts (LRBP) model [28].

RBP SDI SDP BDP LRBP
/v 142(7)  1.462(11) 1.449(11) 1.33025) 1.37(2)
Blv  0.548(13)  0.519(8) 0.65(5)  0.60(2)
z 2.48(5)
A 1.19(1)

relatively close to those of the site-diluted Ising model and
also the large-g-state random-bond Potts model.

IV. CONCLUSION

With extensive dynamic Monte Carlo simulations, we
have investigated the effect of bond randomness on the
rounding of the phase transitions of the 3D random-bond
Potts model. We obtain the phase diagram in the weakly
disordered regime and give an estimate of the tricritical point
r.=2.3(1). At a strong disorder amplitude r=10, we study
the critical properties of the induced continuous transition.
We make an attempt to improve the recently suggested non-
equilibrium reweighting method and apply it to the short-
time dynamic Monte Carlo simulations of second-order and
weak first-order phase transitions. The dynamic approach
shows its merit in estimating the pseudocritical points K and
K" around a weak first-order phase transition and in tackling
the dynamic and static properties of disordered systems.

ACKNOWLEDGMENTS

The authors would like to thank A. P. Young and W. Janke
for helpful discussions. This work was supported in part by
NNSF China under Grant Nos. 10325520 and 10275054,
SRFDP (China), and DFG (Germany) under Grant No. TR
300/3-4.

[1] L. Schwenger, K. Budde, C. Voges, and H. Pfniir, Phys. Rev.
Lett. 73, 296 (1994).
[2] G. S. Iannacchione, G. P. Crawford, S. Zumer, J. W. Doane,
and D. Finotello, Phys. Rev. Lett. 71, 2595 (1993).
[3] Y. Imry and M. Wortis, Phys. Rev. B 19, 3580 (1979).
[4] K. Hui and A. N. Berker, Phys. Rev. Lett. 62, 2507 (1989).
[5] M. Aizenman and J. Wehr, Phys. Rev. Lett. 62, 2503 (1989).
[6] W. Kinzel and E. Domany, Phys. Rev. B 23, 3421 (1981).
[71 A. W. W. Ludwig, Nucl. Phys. B 330, 639 (1990).
[8] S. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. Lett.
69, 1213 (1992).
[9] S. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. E 52,
1377 (1995).
[10] V. Dotsenko, M. Picco, and P. Pujol, Nucl. Phys. B 455, 701
(1995).
[11] M. Picco, Phys. Rev. B 54, 14930 (1996).
[12]J. Cardy and J. L. Jacobsen, Phys. Rev. Lett. 79, 4063 (1997).

[13] C. Chatelain and B. Berche, Phys. Rev. Lett. 80, 1670 (1998).

[14] J. L. Jacobsen and J. Cardy, Nucl. Phys. B 515, 701 (1998).

[15] F. Yasar, Y. Giindiic, and T. Celik, Phys. Rev. E 58, 4210
(1998).

[16] Ricardo Paredes V. and J. Valbuena, Phys. Rev. E 59, 6275
(1999).

[17] T. Olson and A. P. Young, Phys. Rev. B 60, 3428 (1999).

[18] C. Chatelain and B. Berche, Nucl. Phys. B 572[FS], 626
(2000).

[19] C. Deroulers and A. P. Young, Phys. Rev. B 66, 014438
(2002).

[20] J-Ch. Anglés d’Auriac and F. Igl6i, Phys. Rev. Lett. 90,
190601 (2003).

[2117J. Q. Yin, B. Zheng, and S. Trimper, Phys. Rev. E 70, 056134
(2004).

[22] K. Uzelac, A. Hasmy, and R. Jullien, Phys. Rev. Lett. 74, 422
(1995).

036122-8



DYNAMIC MONTE CARLO SIMULATIONS OF THE...

[23] H. G. Ballesteros, L. A. Ferndndez, V. Martin-Mayor, A.
Muiloz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Phys. Rev. B
61, 3215 (2000).

[24] C. Chatelain, B. Berche, W. Janke, and P. E. Berche, Phys.
Rev. E 64, 036120 (2001).

[25]7J. S. Wang and D. Chowdhury, J. Phys. (France) 50, 2905
(1989).

[26] H. O. Heuer, J. Phys. A 26, L.333 (1993).

[27] H. G. Ballesteros, L. A. Ferndndez, V. Martin-Mayor, A.
Muiloz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Phys. Rev. B
58, 2740 (1998).

[28] M. T. Mercaldo, J-Ch. Anglés d’Auriac, and F. Igléi, Euro-
phys. Lett. 70, 733 (2005).

[29] H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B:
Condens. Matter 73, 539 (1989).

[30] D. A. Huse, Phys. Rev. B 40, 304 (1989).

[31] K. Humayun and A. J. Bray, J. Phys. A 24, 1915 (1991).

[32] Z. B. Li, U. Ritschel, and B. Zheng, J. Phys. A 27, 1837
(1994).

[33] B. Zheng, Int. J. Mod. Phys. B 12, 1419 (1998), review article.

[34] B. Zheng, M. Schulz, and S. Trimper, Phys. Rev. Lett. 82,
1891 (1999).

[35] D. Stauffer, Physica A 186, 197 (1992).

[36] N. Ito, Physica A 196, 591 (1993).

[37] H. J. Luo, L. Schiilke, and B. Zheng, Phys. Rev. Lett. 81, 180
(1998).

[38] N. Ito and Y. Ozeki, Physica A 321, 262 (2003).

[39] B. Zheng, in Computer Simulation Studies in Condensed-

PHYSICAL REVIEW E 72, 036122 (2005)

Matter Physics XVII, edited by D. P. Landau (Springer, Heidel-
berg, 2004).

[40] B. Zheng and H. J. Luo, Phys. Rev. E 63, 066130 (2001).

[41] Y. Ozeki and N. Ito, Phys. Rev. B 64, 024416 (2001).

[42] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61,
2635 (1988).

[43]J. S. Wang, R. H. Swendsen, and R. Kotecky, Phys. Rev. Lett.
63, 109 (1989).

[44] T. P. P. M. C. de Oliveira and H. Herrmann, Braz. J. Phys. 26,
677 (1996).

[45] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

[46]J. S. Wang and R. H. Swendsen, J. Stat. Phys. 106, 245
(2002).

[47] R. Dickman, Phys. Rev. E 60, R2441 (1999).

[48] H. K. Lee and Y. Okabe, Phys. Rev. E 71, 015102 (2005).

[49] H. K. Janssen, in From Phase Transition to Chaos, edited by
G. Gyorgyi, 1. Kondor, L. Sasvéri, and T. Tél, Topics in Mod-
ern Statistical Physics (World Scientific, Singapore, 1992).

[50] L. Schiilke and B. Zheng, Phys. Rev. E 62, 7482 (2000).

[51] E. V. Albano, Phys. Lett. A 288, 73 (2001).

[52] G. P. Saracco and E. V. Albano, J. Chem. Phys. 118, 4157
(2003).

[53] W. Janke and R. Villanove, Nucl. Phys. B 489[FS], 679
(1997).

[54]J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Phys.
Rev. Lett. 57, 2999 (1986).

[55] G. P. Zheng and M. Li, Phys. Rev. E 65, 036130 (2002).

036122-9



